

## Enhancing Tympanoplasty Outcomes: Evaluating the Effectiveness of Platelet-Rich Plasma in Type 1 Tympanoplasty with Temporalis Fascia Grafts

Simmi Hasan<sup>1</sup>, Seema Monga<sup>2</sup>, Deepti Agarwal<sup>3</sup>, Shahid Rasool<sup>4</sup>, Juhaina Iqbal<sup>5</sup>

<sup>1</sup>Senior Resident, Department of ENT-HNS, Hamdard Institute of Medical Sciences, New Delhi-110049

<sup>2</sup>Professor, Department of ENT-HNS, Hamdard Institute of Medical Sciences, New Delhi-110049

<sup>3,4</sup>Assistant Professor, Department of ENT-HNS, Hamdard Institute of Medical Sciences, New Delhi-110049

<sup>5</sup>PG Resident, Department of ENT-HNS, Hamdard Institute of Medical Sciences, New Delhi-110049

Received: 25-07-2024 / Revised: 23-08-2024 / Accepted: 26-09-2024

Corresponding Author: Dr. Deepti Agarwal

Conflict of interest: Nil

### Abstract:

**Objective:** This study evaluated the impact of Platelet-Rich Plasma (PRP) on the outcomes of Type 1 tympanoplasty using temporalis fascia grafts.

**Methodology:** This study utilized a cohort prospective randomized controlled trial (RCT) design over 24 months at a tertiary care facility in Northern India to assess the effectiveness of Platelet-Rich Plasma (PRP) in Type 1 Tympanoplasty with temporalis fascia grafts. A total of sixty-five patients with chronic otitis media were randomly assigned to either the PRP group (n=32) or the control group (n=33). The randomization process ensured detached group allocation for evaluating the impact of PRP on surgical outcomes.

**Result:** The study compared demographic and clinical factors in CSOM patients. Group 1 had fewer individuals aged 18-30 and more non-working individuals than Group 2. PRP treatment (Group 2) showed significantly higher graft uptake (90.6% vs. 69.7%, p=0.032). Group A experienced greater hearing improvement (15.06 dB vs. 14.93 dB, p=0.03) and a larger reduction in air-bone gap ( $24.09 \pm 7.54$  dB vs.  $22.8 \pm 8.14$  dB). Follow-up attendance was high across both groups, with Group B achieving 100% attendance at all intervals.

**Conclusion:** In conclusion, Platelet-Rich Plasma (PRP) enhances graft uptake and hearing outcomes in Type 1 tympanoplasty, as indicated by improved air-bone gap and success rates. However, the overall impact on graft uptake remains uncertain, warranting further research with optimized PRP protocols and larger, standardized trials to confirm its effectiveness.

**Keywords:** Chronic Otitis Media, Hearing Improvement, Platelet-Rich Plasma (PRP), Temporalis Fascia Grafts, Type 1 Tympanoplasty.

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>) and the Budapest Open Access Initiative (<http://www.budapestopenaccessinitiative.org/read>), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

### Introduction

Chronic otitis media (COM) constitutes a widespread and persistent illness, especially in India, where it has a substantial influence on public health [1]. The issue often results in perforations of the tympanic membrane (TM), which can be worsened by many reasons, such as trauma caused by incorrect ear cleaning [2]. Frequent perforations frequently lead to significant morbidity, characterized by recurring ear drainage, hearing impairment, and tinnitus [3]. These symptoms not only decrease the quality of life but also present significant difficulties in controlling and treating the affected individuals [4]. When tympanic membrane holes continue to exist after the anticipated healing period, surgical intervention becomes necessary [5]. Tympanoplasty has become a surgical treatment used to repair perforations in the eardrum. It is usually suggested

for individuals whose perforations do not heal on their own [6]. Conventional tympanoplasty procedures utilize graft materials such as temporalis fascia or cartilage [7]. These approaches have demonstrated efficacy in numerous instances, yet their rates of success in terms of graft integration and overall surgical results might vary considerably [8]. Several factors that impact these results include the patient's general well-being, the dimensions and placement of the perforation, and the biological reaction to the graft material [9]. The spontaneous repair of tympanic membrane perforations is an intricate biological process that involves multiple crucial stages [10]. At first, there is an increase in the growth of epithelial cells to cover the area where the perforation has occurred [11]. Subsequently, there exists a process of cell migration and

fibroblast proliferation, which actively contribute to the development of fresh tissue [12]. Angiogenesis, the physiological process of neovascularization, serves as crucial for the transportation of vital nutrients and oxygen to the regenerating tissue [13]. Ultimately, tissue remodelling guarantees the seamless integration of the newly created tissue with the surrounding structures [14]. If the perforation persists for more than three months, significant issues could arise when the healing process is insufficient or delayed. These problems may involve chronic recurring otitis media and permanent hearing loss, requiring additional surgical procedures and the use of graft materials [15].

Advancements in surgical techniques have recently incorporated Platelet-Rich Plasma (PRP) as a promising addition to tympanoplasty [16]. Platelet-rich plasma (PRP) is a substance made from the patient's blood that has a high concentration of platelets and growth factors, which are known to promote tissue regeneration [17]. The utilization of Platelet-Rich Plasma (PRP) in diverse medical domains, such as Orthopaedics and oral surgery, has exhibited noteworthy advantages. PRP is believed to augment the regenerative mechanisms by stimulating cell proliferation, expediting tissue healing, and diminishing inflammation [18]. The potential of tympanoplasty to enhance transplant integration and overall surgical results is highly encouraging [19].

The incorporation of platelet-rich plasma (PRP) in tympanoplasty has the potential to mitigate several disadvantages commonly associated with conventional grafting methods [20]. Platelet-rich plasma (PRP) has the potential to enhance graft uptake rates by improving the local regeneration environment. This, consequently, increases the chances of effective integration of the graft material with the surrounding tissue [21]. Moreover, the regenerative characteristics of PRP could potentially result in improved closure of the air-bone gap, which is a crucial indicator of surgical success in tympanoplasty [22]. In addition, the utilization of Platelet-Rich Plasma (PRP) has the potential to decrease postoperative problems, such as infection and inflammation, which can have a negative impact on the healing process and overall results [23]. The study assessed the effectiveness and safety of integrating Platelet-Rich Plasma (PRP) into Type I tympanoplasty procedures using temporalis fascia grafts [24]. This study intends to assess whether the use of PRP-enhanced grafts in tympanoplasty operations leads to a notable increase in surgical success rates and a decrease in the requirement for subsequent interventions in comparison to the use of standard temporalis fascia grafts alone.

## Methodology

**Study design:** This study employed a cohort prospective and randomized study-controlled trial (RCT) design to evaluate the effectiveness of Platelet-Rich Plasma (PRP) in enhancing outcomes of Type I Tympanoplasty using Temporalis Fascia Grafts. Participants were randomly assigned to either the intervention group receiving PRP or the control group receiving standard care without PRP. Outcome measures included graft uptake rates, hearing improvement, and postoperative complications.

### Study area

The study was carried out exclusively within the Department of Otorhinolaryngology at the specified tertiary care hospital located in Northern India.

**Study Duration:** The study spanned a total duration of 24 months, during which data collection, participant recruitment, interventions, and follow-up assessments were conducted according to the study protocol.

**Study Participants:** Patients diagnosed with chronic otitis media (COM) mucosal inactive (dry perforation) condition who were attending the Ear, Nose, and Throat (ENT) outpatient department had a comprehensive screening and evaluation to see if they met the requirements for participation. The trial included a group of 65 eligible patients, aged 18-59, who needed Type I tympanoplasty with a temporalis fascia graft and consented to participate. The patients were allocated randomly to two groups: Group 1, consisting of 33 patients, underwent Type I tympanoplasty with a temporalis fascia graft only, whereas Group 2, including 32 patients, received Type I tympanoplasty with both a temporalis fascia graft and platelet-rich plasma (PRP). The exclusion criteria included individuals outside the age range of 18-59, those with active ear infections, individuals with diseases that inhibit healing (such as uncontrolled diabetes, immunocompromised states, and the use of specific drugs), and pregnant women due to potential risks associated with PRP.

**Preoperative phase:** Before the insertion of the temporalis fascia graft in the tympanic membrane perforation, blood was taken from the PRP group and then spun in a centrifuge to create PRP. This PRP was then applied over the temporalis fascia graft. The control group underwent normal Type I tympanoplasty without the use of platelet-rich plasma (PRP). Each individual received a thorough clinical examination, audiological testing, and routine preoperative care.

**Preparation of Autologous PRP:** A blood sample of 9 ml was collected from each patient and combined with 1 ml of anticoagulant. The sample underwent an initial centrifugation at 1500 rpm for 15

minutes to separate the layers, followed by a subsequent centrifugation at 3000 rpm for 15 minutes to further concentrate the platelets. The platelet-depleted plasma was extracted, and the remaining liquid was combined and stored. During the surgical operation, the platelet-rich plasma (PRP) was activated using calcium gluconate and administered using gel foam. The follow-up and outcome assessment were carried out according to the original plan.

**Surgical Procedure:** A Type I Tympanoplasty (Myringoplasty) procedure was performed under general anaesthesia. A graft of temporalis fascia was obtained by making a postaural incision. After raising the musculo-periosteal flap, a posterior meatotomy was done, and the edges of the perforation were freshened. The tympano-meatral flap was raised in order to inspect the middle ear cavity and ossicular chain. Temporalis fascia graft was inserted via the underlay technique, and gel foam placed in the middle ear and external auditory canal. Finally, postaural wound was sutured, and mastoid dressing applied.

**Postoperative phase:** Postoperative treatment immediately after surgery consisted of closely monitoring the patient in the recovery area and administering pain medication and antibiotics as prescribed. Subsequent appointments were made at intervals of 1 week, 1 month, 3 months, and 6 months after the surgery. During each visit, otoscopic examinations and tympanometry were conducted to examine the acceptance and healing of the graft. Additionally, pure-tone audiometry was performed at the 3-month and 6-month marks to assess improvements in hearing. Complications have been closely tracked for indications of infection, graft lateralization, or any other problems.

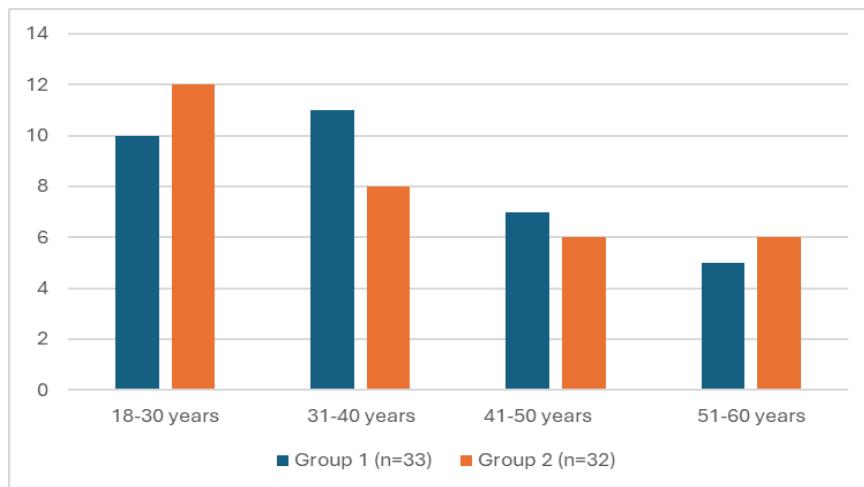
**Follow-Up Assessment:** Patients were monitored on the 10th, 30th, and 90th days after the procedure. Tympanoplasty was considered successful if

the graft had been properly incorporated and the tympanic membrane healed without any tears, retraction, or lateralization within 90 days. Any of these complications indicated failure.

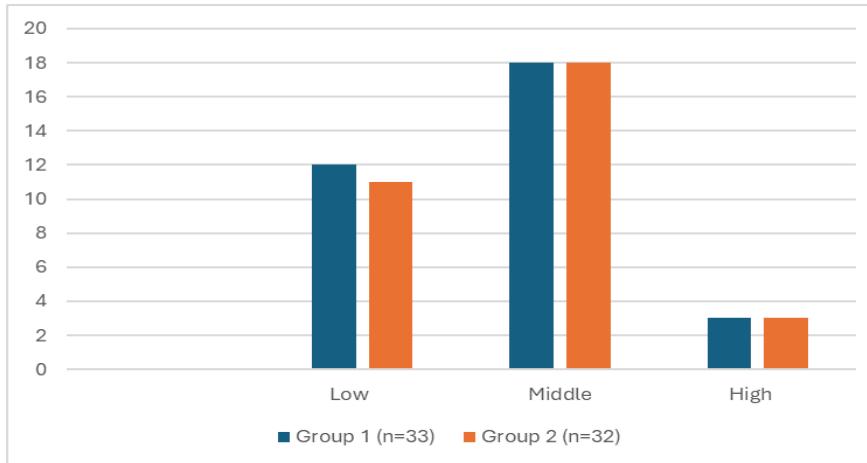
**Ethical considerations:** Before their participation, all participants were given detailed information about the purpose of the study, methods, potential risks, and benefits, as outlined in the consent form, to ensure compliance with ethical standards and voluntary participation.

**Statistical Analysis:** Data was entered into Microsoft Excel and analysed using SPSS version 26. Descriptive statistics were presented as frequencies, percentages, and means  $\pm$  standard deviations. For inferential statistics, Student's t-test or ANOVA was employed, with a p-value  $\leq 0.05$  considered statistically significant.

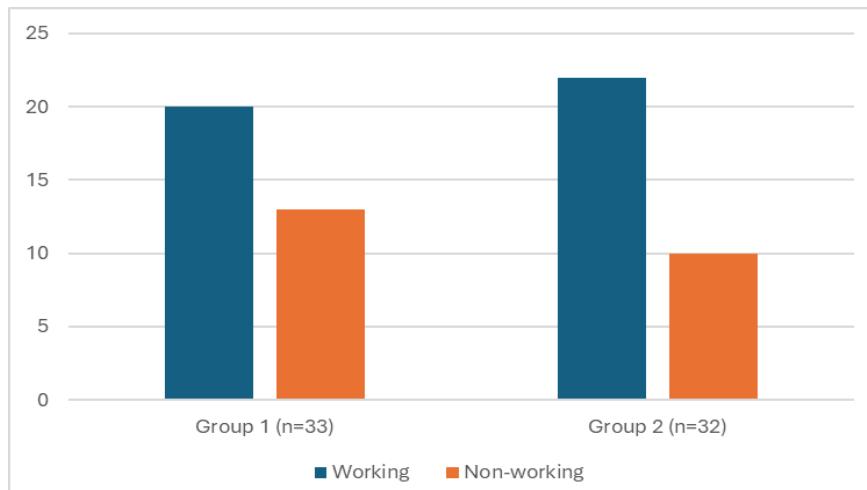
## Results


The study examined several demographic and clinical factors in individuals receiving treatment for Chronic Suppurative Otitis Media (CSOM). The following are the comprehensive findings, organized with statistical analysis, tables, and graphical representations.

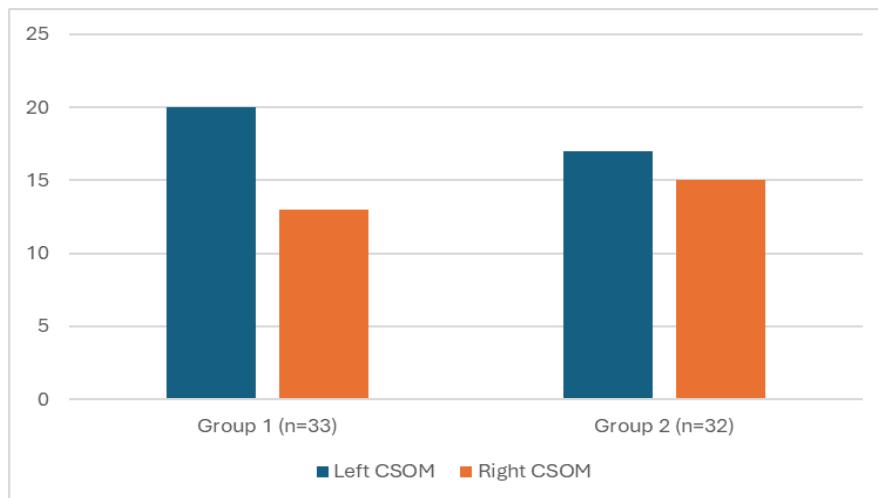
**Patient Demographics analysis:** The patient's demographic and clinical features indicate that both groups have similar age distribution, gender, and socioeconomic position (Fig. 1, 2). Group 1 includes a smaller number of individuals aged 18-30 (30.3%) compared to Group 2 (37.5%) and a higher proportion of individuals who are not working (39.4%) compared to Group 2 (31.3%) (Fig. 3). Most participants in both groups are from the middle socioeconomic level. The pattern of disease is nearly identical between the groups, with a slight prevalence of left-sided chronic suppurative otitis media (CSOM) and comparable diameters of perforation (Fig. 4).


**Table 1: Clinical and Demographic Characteristics of Patients**

| Demographic Characteristic  | Group 1 (n=33) | Group 2 (n=32) |
|-----------------------------|----------------|----------------|
| <b>Age</b>                  |                |                |
| 18-30 years                 | 10 (30.3%)     | 12 (37.5%)     |
| 31-40 years                 | 11 (33.3%)     | 8 (25.0%)      |
| 41-50 years                 | 7 (21.2%)      | 6 (18.8%)      |
| 51-60 years                 | 5 (15.2%)      | 6 (18.8%)      |
| <b>Gender</b>               |                |                |
| Male                        | 19 (57.6%)     | 18 (56.3%)     |
| Female                      | 14 (42.4%)     | 14 (43.8%)     |
| <b>Socioeconomic Status</b> |                |                |
| Low                         | 12 (36.4%)     | 11 (34.4%)     |
| Middle                      | 18 (54.5%)     | 18 (56.3%)     |
| High                        | 3 (9.1%)       | 3 (9.4%)       |
| <b>Occupation</b>           |                |                |
| Working                     | 20 (60.6%)     | 22 (68.8%)     |
| Non-working                 | 13 (39.4%)     | 10 (31.3%)     |


| Disease Side |            |            |
|--------------|------------|------------|
| Left CSOM    | 20 (54.1%) | 17 (53.1%) |
| Right CSOM   | 13 (45.9%) | 15 (46.9%) |




**Figure 1: Illustration of Distribution among Age Groups between Groups 1 (n = 33) and 2 (n = 32)**



**Figure 2: Illustration of Socio-economic Status Distribution between Group 1 (n=33) and Group 2 (n=32)**



**Figure 4: Illustration of Occupation Distribution between Group 1 (n=33) and Group 2 (n=32)**



**Figure 5: Illustration of Disease Side Distribution between Group 1 (n=33) and Group 2 (n=32)**

**Preoperative Analysis:** Table 2 indicates that the incidence of Subtotal Type Perforation (STP) in the two groups. It was found to be identical in both (36.4% & 37.5%), leading to a combined prevalence

of 36.9% across both groups. The p-value of 0.74 indicates that there is no statistically significant disparity in the prevalence of STP between the groups.

**Table 2: Distribution of Patients with Subtotal Type Perforation (STP) in Group A and Group B**

| Group                                         | Group A (n = 33) | Group B (n = 32) | Total (n = 65) | p-value |
|-----------------------------------------------|------------------|------------------|----------------|---------|
| Patients with Subtotal Type Perforation (STP) | 12 (36.4%)       | 12 (37.5%)       | 24 (36.9%)     | 0.74    |

#### Post-operative analysis

**Graft Uptake Status:** According to Table 3, the Platelet-Rich Plasma (PRP) group (Group 2) had a significantly higher percentage of successful graft

uptake (90.6%) compared to the Control group (Group 1), which had a rate of 85% (p = 0.032). These findings indicate that PRP treatment greatly enhances the probability of effective graft integration in tympanoplasty surgeries.

**Table 3: Comparison of Successful Graft Uptake between Control Group and PRP Group**

| Variable                  | Group 1 (Control) (n = 33) | Group 2 (PRP) (n = 32) | Total (n = 65) | P Value |
|---------------------------|----------------------------|------------------------|----------------|---------|
| Successful Graft Uptake   | 28 (85%)                   | 29 (90.6%)             | 57 (87.7%)     | 0.032   |
| Unsuccessful Graft Uptake | 5 (15%)                    | 3 (9.4%)               | 8 (12.3%)      |         |
| Total Patients            | 33                         | 32                     | 65             |         |

**Hearing Gain:** According to Table 4, Group A had a higher mean hearing improvement of 15.06 dB compared to Group B, which had an average improvement of 14.93 dB.

Within Group A, a total of 22 people observed an auditory improvement over 10 decibels, but in

Group B, only 16 persons achieved a similar level of progress. The hearing gain disparity between the two groups is statistically significant, with a p-value of 0.03, suggesting that Group A observed a significantly greater improvement in hearing compared to Group B.

**Table 4: Comparison of Hearing Gains between Group A and Group B**

| group | Average Hearing Gain (dB) | 0-10 dB Gain (n) | >10 dB Gain (n) | p-value |
|-------|---------------------------|------------------|-----------------|---------|
| A     | 15.06                     | 11               | 22              | 0.03    |
| B     | 14.93                     | 16               | 16              | 0.9     |

**Correlation of Preoperative and Postoperative Air-Bone Gap (ABG) Measurements:** Table 5 demonstrates that both Group A and Group B exhibited substantial enhancements in the air-bone gap (ABG) after undergoing therapy. Group A exhibited a significant decrease in ABG, with the average value dropping from  $39.09 \pm 6.9$  dB to 15

$\pm 6.65$  dB. This corresponds to a mean improvement of  $24.09 \pm 7.54$  dB, which was statistically significant ( $p = 0.00012$ ). Group B exhibited a decrease from  $37.7 \pm 6.11$  dB to  $14.9 \pm 9.14$  dB, resulting in an average improvement of  $22.8 \pm 8.14$  dB ( $p = 0.00002$ ). Both groups demonstrated substantial enhancements, with Group B exhibiting an

approximate greater overall improvement, albeit

with a more fluctuating final ABG.

**Table 5: Correlation and Improvement in Air-Bone Gap (ABG) for Group A and Group B**

| Group | Initial ABG (Mean $\pm$ SD) | Final ABG (Mean $\pm$ SD) | Improvement (Mean $\pm$ SD) | p-value |
|-------|-----------------------------|---------------------------|-----------------------------|---------|
| A     | 39.09 $\pm$ 6.9 dB          | 15 $\pm$ 6.65 dB          | 24.09 $\pm$ 7.54 dB         | 0.00012 |
| B     | 37.7 $\pm$ 6.11 dB          | 14.9 $\pm$ 9.14 dB        | 22.8 $\pm$ 8.14 dB          | 0.00002 |

**Follow-up assessment:** Table 6 indicates that the attendance rates for follow-up were high and remained consistent in both Group A and Group B, with a 100% attendance rate at 10 days for both groups ( $p=1.000$ ). However, Group A exhibited marginally lower attendance rates (94.4%) than Group B (100%) at 1 month and 3 months. Howev-

er, these disparities were not statistically significant ( $p=0.160$ ).

This suggests that Group B consistently attended all follow-up sessions, but Group A experienced a tiny reduction in attendance during the subsequent follow-ups. Overall, both groups demonstrated high adherence to the follow-up schedule.

**Table 6: Follow-up Attendance Rates and Graft Failure Rates for Groups A and B**

| Follow-up | Group A (n = 33) | Group B (n = 32) | p-value |
|-----------|------------------|------------------|---------|
| 10 days   | 33 (100%)        | 32 (100%)        | 1.000   |
| 1 month   | 31 (94.4%)       | 32 (100%)        | 0.160   |
| 3 months  | 31 (94.4%)       | 32 (100%)        | 0.160   |

## Discussion

Chronic Suppurative Otitis Media (CSOM) has become a significant global health issue, impacting hearing function and overall quality of life, despite developments in medicinal and surgical interventions [25]. Tympanoplasty is the most frequent surgical option given to the patient. The success rates of this procedure have been shown to range from 86% to 100% [26]. Temporalis fascia has been the preferred material for grafting, with success rates of up to 88%, as evidenced by many meta-analyses [27]. Recent improvements suggest that fat grafts provide a viable option by enhancing the creation of new blood vessels, hence minimizing post-surgical shrinking and facilitating the production of replacement tiny blood vessels [28].

The demographic features of the research groups were generally similar in terms of age distribution, gender, and socioeconomic position. The alignment of this study is in line with other research that has also identified no notable demographic biases that impact the results of tympanoplasty. The results of our investigation revealed a marginally reduced proportion of younger persons in Group 1 in comparison to Group 2, which seems consistent with the observations made by Yang et al. (2019) regarding age discrepancies among patient groups undergoing identical procedures [29]. The results of our study found that the incidence of Subtotal Perforation (STP) was similar in both groups, and there was no statistically significant difference. These findings are consistent with the results reported by Alam et al., 2023. The absence of significant discrepancy suggests that the initial characteristics of the perforations were identical, hence reducing possible factors that could influence the evaluation of postoperative outcomes [30]. The results of our study indicate that the PRP group had

a considerably greater percentage of effective graft take-up (90.6%) in comparison to the control group (85%). This finding aligns with multiple studies that have emphasized the advantages of PRP in enhancing the integration of grafts and increasing success rates in tympanoplasty. The observed increase in graft acceptance in our PRP group provides evidence to support the idea that the bioactive growth factors included in PRP contribute to improved tissue healing and integration of the graft. In contrast, alternative research conducted by Gunes et al. in 2023 yielded inconclusive findings regarding the influence of PRP on graft acceptance. This suggests that the advantages of PRP could vary based on variables like as the surgical method employed and patient-specific circumstances. This diversity highlights the necessity for additional research to clarify the exact circumstances in which PRP demonstrates its advantageous benefits [31].

Group A demonstrated a statistically significant increase in hearing compared to Group B, with a larger average hearing improvement and a greater number of subjects experiencing increases exceeding 10 dB. This finding aligns with the research conducted by Jayakumar et al. in 2016, which demonstrated that PRP can improve hearing outcomes after tympanoplasty. The enhanced auditory improvement observed in the PRP group can be due to the expedited regeneration of tissues and the decreased inflammation facilitated by PRP [32].

Nevertheless, certain studies, including the ones conducted by Zhu et al. in 2020, have indicated that the improvements in hearing outcomes achieved through PRP are only minimal. This suggests that although PRP may have some benefits, its effect on hearing gain may not be consistently significant and could be influenced by individual patient factors and surgical variables [33]. Both groups had

substantial decreases in the air-bone gap (ABG) after the surgery, with the PRP group displaying a slightly superior enhancement. This is consistent with the results of a prior study conducted by Ebrahim et al., 2018, which indicated that PRP can be effective in enhancing hearing function. The significant enhancement found in our PRP group provides additional evidence that the regenerative characteristics of PRP contribute to improved auditory outcomes by boosting middle ear function and lowering conductive hearing loss [34].

The rates of follow-up attendance were high in both groups, and there was no notable disparity in total adherence. This observation aligns with the research conducted by Ma et al. in 2024, which reported high percentages of successful patient follow-up in individuals who received tympanoplasty.

The marginal decrease in attendance in Group A during subsequent follow-ups, while lacking statistical significance, implies that patient compliance with follow-up could be influenced by variables other than the intervention itself [35].

## Conclusion

In conclusion, the administration of Platelet-Rich Plasma (PRP) in Type 1 tympanoplasty with temporalis fascia grafts has demonstrated promising results in enhancing graft uptake and improving hearing outcomes. This is demonstrated by the observed decrease in the air-bone gap and greater success rates observed in the PRP group. Although there are advantages to using PRP, its influence on graft uptake rates continues to be uncertain. Therefore, additional research must be conducted to develop improved PRP protocols and conduct greater standardized studies in order to confirm the effectiveness in enhancing clinical practice.

## References

- Vijayappan A, Deshmukh PT, Gaurkar S. Clinical Profile of Squamosal Chronic Otitis Media among Paediatric and Adult Patients in Rural Population of Central India: A Cross-sectional Study. *Journal of Clinical and Diagnostic Research*. 2023 Jun 1; 17(6):MC01-4.
- Lou ZC, Lou ZH, Zhang QP. Traumatic tympanic membrane perforations: a study of aetiology and factors affecting outcome. *American journal of otolaryngology*. 2012 Sep 1; 33(5):549-55.
- Prasad BK, Basu A, Sahu PK, Rai AK. A study of otological manifestations of temporal bone fractures. *Indian Journal of Otolaryngology and Head & Neck Surgery*. 2022 Aug 2:1-9.
- Prasad BK, Basu A, Sahu PK, Rai AK. A study of otological manifestations of temporal bone fractures. *Indian Journal of Otolaryngology and Head & Neck Surgery*. 2022 Aug 2:1-9.
- Marchioni D, Gazzini L, De Rossi S, Di Maro F, Sacchetto L, Carner M, Bianconi L. The management of tympanic membrane perforation with endoscopic type I tympanoplasty. *Otology & Neurotology*. 2020 Feb 1; 41(2):214-21.
- Baklaci D, Guler I, Kuzucu I, Kum RO, Ozcan M. Type 1 tympanoplasty in pediatric patients: a review of 102 cases. *BMC pediatrics*. 2018 Dec; 18:1-6.
- Kolethekkat AA, Al Abri R, Al Zaabi K, Al Marhoobi N, Jose S, Pillai S, Mathew J. Cartilage rim augmented fascia tympanoplasty: a more effective composite graft model than temporalis fascia tympanoplasty. *The Journal of Laryngology & Otology*. 2018 Jun; 132(6):497-504.
- Zuhr O, Bäumer D, Hürzeler M. The addition of soft tissue replacement grafts in plastic periodontal and implant surgery: critical elements in design and execution. *Journal of clinical periodontology*. 2014 Apr; 41:S123-42.
- Abed H, Rahn DD, Lowenstein L, Balk EM, Clemons JL, Rogers RG, Systematic Review Group of the Society of Gynecologic Surgeons. Incidence and management of graft erosion, wound granulation, and dyspareunia following vaginal prolapse repair with graft materials: a systematic review. *International urogynecology journal*. 2011 Jul; 22:789-98.
- Ma Y, Zhao H, Zhou X. Topical treatment with growth factors for tympanic membrane perforations: progress towards clinical application. *Acta oto-laryngologica*. 2002 Jan 1; 122(6):586-99.
- Newby AC, Zaltsman AB. Fibrous cap formation or destruction—the critical importance of vascular smooth muscle cell proliferation, migration and matrix formation. *Cardiovascular research*. 1999 Feb 1; 41(2):345-60.
- Johnson KE, Wilgus TA. Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. *Advances in wound care*. 2014 Oct 1; 3(10):647-61.
- Stella JA, D'Amore A, Wagner WR, Sacks MS. On the biomechanical function of scaffolds for engineering load-bearing soft tissues. *Acta biomaterialia*. 2010 Jul 1; 6(7):2365-81.
- Politis C, Schoenaers J, Jacobs R, Agbaje JO. Wound healing problems in the mouth. *Frontiers in physiology*. 2016 Nov 2; 7:507.
- Li M, Mu Y, Cai H, Wu H, Ding Y. Application of new materials in auditory disease treatment. *Frontiers in cellular neuroscience*. 2022 Jan 31; 15:831591.
- Arora K, Kaintura M, Maithani T, Hernot S, Pandey AK, Varma A, Dogra R. A Comparative Analysis of Patients Undergoing Type 1

Tympanoplasty Using Platelet-Rich Fibrin versus Patients Undergoing Conventional Type 1 Tympanoplasty Without the use of Platelet-Rich Fibrin. *Saudi Journal of Otorhinolaryngology Head and Neck Surgery*. 2023 Apr 1; 25(2):58-63.

17. Fioravanti C, Frustaci I, Armellin E, Condò R, Arcuri C, Cerroni L. Autologous blood preparations rich in platelets, fibrin and growth factors. *ORAL & implantology*. 2015 Oct; 8(4):96.
18. Sánchez M, Andia I, Anitua E, Sánchez P. Platelet rich plasma (PRP) biotechnology: concepts and therapeutic applications in orthopedics and sports medicine. *Innovations in biotechnology*. 2012 Feb 17:113-38.
19. Lin MY, Chang TS, Liao JB. The pretragal superficial musculoaponeurotic system fascia: a new graft material for transcanal tympanoplasty. *Otology & Neurotology*. 2020 Jun 1; 41(5):644-53.
20. Sankaranarayanan G, Prithviraj V, Kumar V. A study on efficacy of autologous platelet rich plasma in myringoplasty. *Online Journal of Otolaryngology*. 2013 Jul 1; 3(3):36.
21. Naderi N, Griffin MF, Mosahebi A, Butler PE, Seifalian AM. Adipose derived stem cells and platelet rich plasma improve the tissue integration and angiogenesis of biodegradable scaffolds for soft tissue regeneration. *Molecular Biology Reports*. 2020 Mar; 47:2005-13.
22. Kütük SG, Özdaş T. Impact of platelet-rich fibrin therapy in tympanoplasty type 1 surgery on graft survival and frequency-specific hearing outcomes: a retrospective analysis in patients with tympanic membrane perforation due to chronic otitis media. *The Journal of Laryngology & Otology*. 2019 Dec; 133(12):1068-73.
23. Andia I, Maffulli N. Platelet-rich plasma for managing pain and inflammation in osteoarthritis. *Nature Reviews Rheumatology*. 2013 Dec; 9(12):721-30.
24. Sainsbury E, do Amaral R, Blayney AW, Walsh RM, O'Brien FJ, O'Leary C. Tissue engineering and regenerative medicine strategies for the repair of tympanic membrane perforations. *Biomaterials and Biosystems*. 2022 Jun 1; 6:100046.
25. Marsh RL, Aho C, Beissbarth J, Bialasiewicz S, Binks M, Cervin A, Kirkham LA, Lemon KP, Slack MP, Smith-Vaughan HC. Panel 4: Recent advances in understanding the natural history of the otitis media microbiome and its response to environmental pressures. *International journal of pediatric otorhinolaryngology*. 2020 Mar 1; 130:109836.
26. Arora N, Passey JC, Agarwal AK, Bansal R. Type 1 tympanoplasty by cartilage palisade and temporalis fascia technique: a comparison. *Indian Journal of Otolaryngology and Head & Neck Surgery*. 2017 Sep; 69:380-4.
27. Lin MY, Chang TS, Liao JB. The pretragal superficial musculoaponeurotic system fascia: a new graft material for transcanal tympanoplasty. *Otology & Neurotology*. 2020 Jun 1; 41(5):644-53.
28. Konczalik W, Siemionow M. Experimental and clinical methods used for fat volume maintenance after autologous fat grafting. *Annals of Plastic Surgery*. 2014 Apr 1; 72(4):475-83.
29. Yang Z, Wu X, Chen X, Huang Y, Fang L, Li X, Zhang Y, Jia M. Comparison of type I tympanoplasty with acellular dermal allograft and cartilage perichondrium. *Acta Otolaryngologica*. 2019 Oct 3; 139(10):833-6.
30. Alam M, Tahir R, Ahmad S, Amin S, Zareen A, Khan AG. Frequency of Helicobacter Pylori (H. Pylori) among Patients presenting with Duodenal Perforation. *Pakistan Journal of Medical & Health Sciences*. 2023 Mar 29; 17(03):142-.
31. Gunes D, Oksuz S, Koseoglu RD, Gokce E. Comparison of the Effect of Platelet-rich Plasma (PRP) and Fat Graft on Autologous Bone Grafting in a Randomized-controlled Experimental Skull Model. *Journal of Craniofacial Surgery*. 2024 Jun 1; 35(4):1298-304.
32. Jayakumar JK, Reghunathan D, Edacheriyan B, Divakaran B, Mukundan A. Closure of small central perforations of tympanic membrane with Gelfilm patch and application of platelet rich plasma versus chemical cauterization: a comparative study. *Journal of Evolution of Medical and Dental Sciences*. 2016 Mar 10; 5(20):1004-9.
33. Zhu Y, Jin Z, Fang J, Wang J, Wang Y, Song Q, Tian X, Zhang Y, Xie F, Chen W, Peng N. Platelet-rich plasma combined with low-dose ultrashort wave therapy accelerates peripheral nerve regeneration. *Tissue Engineering Part A*. 2020 Feb 1; 26(3-4):178-92.
34. Ebrahim AR, Fouad YA, Ali MB, El-Baz SA. Myringoplasty of Central Tympanic Membrane Perforation with a Fat Graft from the Ear Lobule and Platelet Rich Plasma. *Zagazig University Medical Journal*. 2018 Mar 1; 24(2):143-9.
35. Ma K, Wang Q, Liang W, Zhang M, Zhang Y, Wang Y. Therapeutic Effect of Tympanoplasty on Patients with Chronic Otitis Media with Tinnitus and Influencing Factors. *Alternative Therapies in Health & Medicine*. 2024 Jan 1; 30(1).